Selamat Datang di X3-PRIMA, Melayani Setulus Hati, Memberikan yang terbaik

28.5.09

ilmu alam

Karbohidrat

Karbohidrat ('hidrat dari karbon', hidrat arang) atau sakarida (dari bahasa Yunani σάκχαρον, sákcharon, berarti "gula") adalah segolongan besar senyawa organik yang paling melimpah di bumi. Karbohidrat memiliki berbagai fungsi dalam tubuh makhluk hidup, terutama sebagai bahan bakar (misalnya glukosa), cadangan makanan (misalnya pati pada tumbuhan dan glikogen pada hewan), dan materi pembangun (misalnya selulosa pada tumbuhan, kitin pada hewan dan jamur).[1] Pada proses fotosintesis, tetumbuhan hijau mengubah karbon dioksida menjadi karbohidrat.

Secara biokimia, karbohidrat adalah polihidroksil-aldehida atau polihidroksil-keton, atau senyawa yang menghasilkan senyawa-senyawa ini bila dihidrolisis.[2] Karbohidrat mengandung gugus fungsi karbonil (sebagai aldehida atau keton) dan banyak gugus hidroksil. Pada awalnya, istilah karbohidrat digunakan untuk golongan senyawa yang mempunyai rumus (CH2O)n, yaitu senyawa-senyawa yang n atom karbonnya tampak terhidrasi oleh n molekul air.[3] Namun demikian, terdapat pula karbohidrat yang tidak memiliki rumus demikian dan ada pula yang mengandung nitrogen, fosforus, atau sulfur.[2]

Bentuk molekul karbohidrat paling sederhana terdiri dari satu molekul gula sederhana yang disebut monosakarida, misalnya glukosa, galaktosa, dan fruktosa. Banyak karbohidrat merupakan polimer yang tersusun dari molekul gula yang terangkai menjadi rantai yang panjang serta dapat pula bercabang-cabang, disebut polisakarida, misalnya pati, kitin, dan selulosa. Selain monosakarida dan polisakarida, terdapat pula disakarida (rangkaian dua monosakarida) dan oligosakarida (rangkaian beberapa monosakarida

Butir-butir pati, salah satu jenis karbohidrat cadangan makanan pada tumbuhan, dilihat dengan mikroskop cahaya.

Peran biologis

Peran dalam biosfer

Fotosintesis menyediakan makanan bagi hampir seluruh kehidupan di bumi, baik secara langsung atau tidak langsung. Organisme autotrof seperti tumbuhan hijau, bakteri, dan alga fotosintetik memanfaatkan hasil fotosintesis secara langsung. Sementara itu, hampir semua organisme heterotrof, termasuk manusia, benar-benar bergantung pada organisme autotrof untuk mendapatkan makanan.[4]

Pada proses fotosintesis, karbon dioksida diubah menjadi karbohidrat yang kemudian dapat digunakan untuk mensintesis materi organik lainnya. Karbohidrat yang dihasilkan oleh fotosintesis ialah gula berkarbon tiga yang dinamai gliseraldehida 3-fosfat. Senyawa ini merupakan bahan dasar senyawa-senyawa lain yang digunakan langsung oleh organisme autotrof, misalnya glukosa, selulosa, dan pati.

Peran sebagai bahan bakar dan nutrisi

Karbohidrat menyediakan kebutuhan dasar yang diperlukan tubuh makhluk hidup. Monosakarida, khususnya glukosa, merupakan nutrien utama sel. Misalnya, pada vertebrata, glukosa mengalir dalam aliran darah sehingga tersedia bagi seluruh sel tubuh. Sel-sel tubuh tersebut menyerap glukosa dan mengambil tenaga yang tersimpan di dalam molekul tersebut pada proses respirasi selular untuk menjalankan sel-sel tubuh. Selain itu, kerangka karbon monosakarida juga berfungsi sebagai bahan baku untuk sintesis jenis molekul organik kecil lainnya, termasuk asam amino dan asam lemak.[1]

Sebagai nutrisi untuk manusia, 1 gram karbohidrat memiliki nilai energi 4 Kalori.[5] Dalam menu makanan orang Asia Tenggara termasuk Indonesia, umumnya kandungan karbohidrat cukup tinggi, yaitu antara 70–80%. Bahan makanan sumber karbohidrat ini misalnya padi-padian atau serealia (gandum dan beras), umbi-umbian (kentang, singkong, ubi jalar), dan gula.[6]

Namun demikian, daya cerna tubuh manusia terhadap karbohidrat bermacam-macam bergantung pada sumbernya, yaitu bervariasi antara 90%–98%. Serat menurunkan daya cerna karbohidrat menjadi 85%.[7] Manusia tidak dapat mencerna selulosa sehingga serat selulosa yang dikonsumsi manusia hanya lewat melalui saluran pencernaan dan keluar bersama feses. Serat-serat selulosa mengikis dinding saluran pencernaan dan merangsangnya mengeluarkan lendir yang membantu makanan melewati saluran pencernaan dengan lancar sehingga selulosa disebut sebagai bagian penting dalam menu makanan yang sehat. Contoh makanan yang sangat kaya akan serat selulosa ialah buah-buahan segar, sayur-sayuran, dan biji-bijian.[8]

Selain sebagai sumber energi, karbohidrat juga berfungsi untuk menjaga keseimbangan asam basa di dalam tubuh[rujukan?], berperan penting dalam proses metabolisme dalam tubuh, dan pembentuk struktur sel dengan mengikat protein dan lemak.

ssPeran sebagai cadangan energi

Beberapa jenis polisakarida berfungsi sebagai materi simpanan atau cadangan, yang nantinya akan dihidrolisis untuk menyediakan gula bagi sel ketika diperlukan. Pati merupakan suatu polisakarida simpanan pada tumbuhan. Tumbuhan menumpuk pati sebagai granul atau butiran di dalam organel plastid, termasuk kloroplas. Dengan mensintesis pati, tumbuhan dapat menimbun kelebihan glukosa. Glukosa merupakan bahan bakar sel yang utama, sehingga pati merupakan energi cadangan.[9]

Sementara itu, hewan menyimpan polisakarida yang disebut glikogen. Manusia dan vertebrata lainnya menyimpan glikogen terutama dalam sel hati dan otot. Penguraian glikogen pada sel-sel ini akan melepaskan glukosa ketika kebutuhan gula meningkat. Namun demikian, glikogen tidak dapat diandalkan sebagai sumber energi hewan untuk jangka waktu lama. Glikogen simpanan akan terkuras habis hanya dalam waktu sehari kecuali kalau dipulihkan kembali dengan mengonsumsi makanan.[9]

Peran sebagai materi pembangun

Organisme membangun materi-materi kuat dari polisakarida struktural. Misalnya, selulosa ialah komponen utama dinding sel tumbuhan. Selulosa bersifat seperti serabut, liat, tidak larut di dalam air, dan ditemukan terutama pada tangkai, batang, dahan, dan semua bagian berkayu dari jaringan tumbuhan.[10] Kayu terutama terbuat dari selulosa dan polisakarida lain, misalnya hemiselulosa dan pektin. Sementara itu, kapas terbuat hampir seluruhnya dari selulosa.

Polisakarida struktural penting lainnya ialah kitin, karbohidrat yang menyusun kerangka luar (eksoskeleton) arthropoda (serangga, laba-laba, crustacea, dan hewan-hewan lain sejenis). Kitin murni mirip seperti kulit, tetapi akan mengeras ketika dilapisi kalsium karbonat. Kitin juga ditemukan pada dinding sel berbagai jenis fungi.[8]

Sementara itu, dinding sel bakteri terbuat dari struktur gabungan karbohidrat polisakarida dengan peptida, disebut peptidoglikan. Dinding sel ini membentuk suatu kulit kaku dan berpori membungkus sel yang memberi perlindungan fisik bagi membran sel yang lunak dan sitoplasma di dalam sel.[11]

Karbohidrat struktural lainnya yang juga merupakan molekul gabungan karbohidrat dengan molekul lain ialah proteoglikan, glikoprotein, dan glikolipid. Proteoglikan maupun glikoprotein terdiri atas karbohidrat dan protein, namun proteoglikan terdiri terutama atas karbohidrat, sedangkan glikoprotein terdiri terutama atas protein. Proteoglikan ditemukan misalnya pada perekat antarsel pada jaringan, tulang rawan, dan cairan sinovial yang melicinkan sendi otot. Sementara itu, glikoprotein dan glikolipid (gabungan karbohidrat dan lipid) banyak ditemukan pada permukaan sel hewan.[12] Karbohidrat pada glikoprotein umumnya berupa oligosakarida dan dapat berfungsi sebagai penanda sel. Misalnya, empat golongan darah manusia pada sistem ABO (A, B, AB, dan O) mencerminkan keragaman oligosakarida pada permukaan sel darah

Klasifikasi karbohidrat

Monosakarida

Monosakarida merupakan karbohidrat paling sederhana karena molekulnya hanya terdiri atas beberapa atom C dan tidak dapat diuraikan dengan cara hidrolisis menjadi karbohidrat lain. Monosakarida dibedakan menjadi aldosa dan ketosa. Contoh dari aldosa yaitu glukosa dan galaktosa. Contoh ketosa yaitu fruktosa.

[sunting] Disakarida dan oligosakarida

Disakarida merupakan karbohidrat yang terbentuk dari dua molekul monosakarida yang berikatan melalui gugus -OH dengan melepaskan molekul air. Contoh dari disakarida adalah sukrosa, laktosa, dan maltosa.

[sunting] Polisakarida

Polisakarida merupakan karbohidrat yang terbentuk dari banyak sakarida sebagai monomernya. Rumus umum polisakarida yaitu C6(H10O5)n. Contoh polisakarida adalah selulosa, glikogen, dan amilum.



Karbohidrat

Jan 13, '08 3:53 AM
for everyone

Pengertian

Karbohidrat adalah senyawa organik terdiri dari unsur karbon, hidrogen, dan oksigen. contoh; glukosa C6H12O6, sukrosa C12H22O11, sellulosa (C6H10O5)n. Rumus umum karbohidrat Cn(H2O)m.

Karena komposisi yang demikian, senyawa ini pernah disangka sebagai hidrat karbon, tetapi sejak 1880, senyawa tersebut bukan hidrat dari karbon. Nama lain dari karbohidrat adalah sakarida, berasal dari bahasa Arab "sakkar" artinya gula. Karbohidrat sederhana mempunyai rasa manis sehingga dikaitkan dengan gula. Melihat struktur molekulnya, karbohidrat lebih tepat didefinisikan sebagai suatu polihidroksialdehid atau polihidroksiketon. Contoh glukosa; adalah suatu polihidroksi aldehid karena mempunyai satu gugus aldehid da 5 gugus hidroksil (OH).

Klasifikasi

Karbohidrat terbagi menjadi 3 kelompok;

  1. monosakarida, yi terdiri atas 3-6 atom C dan zat ini tidak dapat lagi dihidrolisis oleh larutan asam dalam air menjadi karbohidrat yg lebih sederhana.

  2. disakarida, yi senyawanya terbentuk dari 2 molekul monosakarida yg sejenis atau tidak. Disakarida dpt dihidrolisis oleh larutan asam dalam air sehingga terurai menjadi 2 molekul monosakarida.

  3. polisakarida, yi senyawa yg terdiri dari gabungan molekul2 monosakarida yg banyak jumlahnya, senyawa ini bisa dihidrolisis menjadi banyak molekul monosakarida.

Fungsi

Bagi manusia; sbg sumber energi. Bagi tumbuhan; amilum sebagai cadangan makanan, sellulosa sbg pembentuk kerangka bagi tumbuhan.

Tumbuhan mendapat amilum dan selulosa dari glukosa. Glukosa dihasilkan pada fotosintesis

Beberapa monosakarida penting

Glukosa

Glukosa disebut juga gula anggur karena terdapat dalam buah anggur, gula darah karena terdapat dalam darah atau dekstrosa karena memutarkan bidang polarisasi kekanan. Glukosa merupakan monomer dari polisakarida terpenting yaitu amilum, selulosa dan glikogen. Glukosa merupakan senyawa organik terbanyak. terdapat pada hidrolisis amilum, sukrosa, maltosa, dan laktosa.

Fruktosa

Fruktosa terdapat dalam buah2an, merupakan gula yang paling manis. Bersama2 dengan glukosa merupakan komponen utama dari madu. Larutannya merupakan pemutar kiri sehingga fruktosa disebut juga levulosa.

Ribosa dan 2-deoksiribosa

Ribosa da 2-deoksiribosa adalah gula pentosa yg membentuk RNA dan DNA.

Sifat2 monosakarida

  1. semua monosakarida zat padat putih, mudah larut dalam air.

  2. larutannya bersifat optis aktif.

  3. larutan monosakarida yg baru dibuat mengalami perubahan sudut putaran disebut mutarrotasi.

  4. contoh larutan alfaglukosa yang baru dibuat mempunyai putaran jenis + 113` akhirnya tetap pada + 52,7`.

  5. umumnya disakarida memperlihatkan mutarrotasi, tetapi polisakarida tidak.

  6. semua monosakarida merupakan reduktor sehingga disebut gula pereduksi.

Identifikasi monosakarida

  1. uji umum utk karbohidrat adalah uji Molisch. bila larutan karbohidrat diberi beberapa tetes larutan alfa-naftol, kemudian H2SO4 pekat secukupnya sehingga terbentuk 2 lapisan cairan, pada bidang batas kedua lapisan itu terbentuk cincin ungu.

  2. gula pereduksi yaitu monosakarida dan disakarida kecuali sukrosa dapat ditunjukkan dg pereaksi Fehling atau Bennedict. Gula pereduksi bereaksi dg pereaksi Fehling atau Benedict menghasilkan endapan merah bata (Cu2O). Selain Pereaksi Benedict dan Fehling, gula pereduksi juga bereaksi positif dg pereaksi Tollens.

  3. reaksi Seliwanoff (khusus menunjukkan adanya fruktosa). Pereaksi seliwanoff terdiri dari serbuk resorsinol + HCl encer. Bila fruktosa diberi pereaksi seliwanoff dan dipanaskan dlm air mendidih selama 10 menit akan terjadi perubahan warna menjadi lebih tua.

O O

║ ║

C H C OH

│ │

(CHOH)4 + 2CUO (CHOH)4 + CU2O↓

Fehling │ cermin tembaga

CH2OH CH2OH

Glukosa as. glukonat

qforq.multiply.com

Karbohidrat itu sifat kimianya berhubungan dengan sama gugus -OH, gugus aldehida dan keton.
Nah, dari situ uji karbohidrat biasanya termasuk :
1. Sifat mereduksi
Monosakarida dan bbrp disakarida dapat mereduksi terutama dalam suasana basa. Sifat ini karena adanya gugus aldehida atau benda keton dalam karbohidrat. Sifat mereduksi keliatan pada reaski reduksi ion logam seperti ion Cu2+ dan ion Ag+ pada pereaksi tertentu :
a. Pereaksi Fehling
b. Pereaksi Benedict
c. Pereaksi Barfoed
dll...

2. Pembentukan Furfural
Dalam larutan asam encer, walaupun dipanaskan, monosakarida umumnya stabil. Namun pada asam kuat yang pekat, monosakarida menghasilkan furfural atau derivatnya. Reaksi pembentukan furfural ini adalah reaksi dehidrasi/pelepasan molukel air dari suatu senyawa.

Pentosa hampir secara kuantitatif semuanya terdehidrasi menjadi furfural.
Heksosa menghasilkan hidroksimetilfurfural.

Karena furfural dan derivatnya ini membentuk senyawa berwarna, reaksi ini bisa dipake buat uji karbohidrat. Contohnya pereaksi Molisch.

3. Pembentukan Osazon
Setiap karbohidrat yang memiliki gugus aldehida atau keton bebas akan membentuk osazon saat dipanaskan bersama fenilhidarzin berlebih. Osazon yg dihasilkan ini memiliki bentuk kristal dan titik lebur yang berbeda bagi setiap karbohidrat, makanya bisa dipake juga buat identifikasi karbohidrat dan ngebedain monosakarida, contohnya memisahkan antara glukosa dan galaktosa pada urine wanita yang sedang menyusui.

4. Pembentukan Ester
gugus hidroksil pada karbohidrat dapat menghasilkan ester saat karbohidrat direaksikan dengan asam. Monosakarida memiliki beberapa gugus -OH dan dgn asam fosfat dapat menghasilkan ester asam fosfat.

Ester yang biasanya dianggap penting adalah alpha-D-glukosa-6-fosfat dan alpha-D-fruktosa-1,6-difosfat. Penting karena kedua ester ini terjadi dari reaksi monosakarida dan ATP + enzim2 di dalam tubuh.

5. Isomerasi

Monosakarida dalam larutan basa encer tidak stabil; apabila glukosa dilarutkan sebagian akan berubah menjadi fruktosa dan manosa. Ketiganya ada dalam keadaan setimbang. Hal yang sama terjadi saat yang dilarutkan adalah fruktosa atau manosa, pada akhirnya akan tercapai kesetimbangan antara ketiga monosakarida tsb. Reaksi ini dikenal sebagai transformasi Lobry de Bruin.

6. Pembentukan Glikosida
Glukosa yang bereaksi dengan metilalkohol akan menghasilkan dua senyawa, keduanya dapat dipisahkan satu dgn yang lainnya dan keduanya tdk memiliki gugus alhedia. Hal ini membuktikan yang menjadi pusat reaksi adalah guguh -OH yg terikat pada atom C no 1. Senyawa yg terbentuk adalah asetal, umunya disebutnya glikosida. Ikatan yg terjadi antara gugus metil dgn monosakarida diesbut ikatan glikosidan dan gugus -OH yg bereaksi disebut gugus -OH glikosidik. Sedangkan dua senyawa yang dihasilkan adalah metil-alpha-D-glukosida atau metil-alpha-D-glukopiranosida dan metil-beta-D-glukosida atau metil-beta-D-glukopiranosida.